uric acid freely diffuse into the tubules. There are exchange pumps lining the tubules, which actively transport H⁺ ions into the cell and K⁺ or Na⁺ ions out; water passively follows to form urine. The secretion of ions alters the osmotic pressure which draws water, electrolytes, and nitrogenous waste (uric acid) into the tubules. Water and electrolytes are reabsorbed when these organisms are faced with low-water environments, and uric acid is excreted as a thick paste or powder. Not dissolving wastes in water helps these organisms to conserve water; this is especially important for life in dry environments. **Figure 41.11** Malpighian tubules of insects and other terrestrial arthropods remove nitrogenous wastes and other solutes from the hemolymph. Na⁺ and/or K⁺ ions are actively transported into the lumen of the tubules. Water then enters the tubules via osmosis, forming urine. The urine passes through the intestine, and into the rectum. There, nutrients diffuse back into the hemolymph. Na⁺ and/or K⁺ ions are pumped into the hemolymph, and water follows. The concentrated waste is then excreted. See a dissected cockroach, including a close-up look at its Malpighian tubules, in this video (https://openstax.org/l/malpighian). ## 41.4 | Nitrogenous Wastes By the end of this section, you will be able to do the following: - Compare and contrast the way in which aquatic animals and terrestrial animals can eliminate toxic ammonia from their systems - Compare the major byproduct of ammonia metabolism in vertebrate animals to that of birds, insects, and reptiles Of the four major macromolecules in biological systems, both proteins and nucleic acids contain nitrogen. During the catabolism, or breakdown, of nitrogen-containing macromolecules, carbon, hydrogen, and oxygen are extracted and stored in the form of carbohydrates and fats. Excess nitrogen is excreted from the body. Nitrogenous wastes tend to form toxic **ammonia**, which raises the pH of body fluids. The formation of ammonia itself requires energy in the form of ATP and large quantities of water to dilute it out of a biological system. Animals that live in aquatic environments tend to release ammonia into the water. Animals that excrete ammonia are said to be **ammonotelic**. Terrestrial organisms have evolved other mechanisms to excrete nitrogenous wastes. The animals must detoxify ammonia by converting it into a relatively nontoxic form such as urea or uric acid. Mammals, including humans, produce urea, whereas reptiles and many terrestrial invertebrates produce uric acid. Animals that secrete urea as the primary nitrogenous waste material are called **ureotelic** animals. ## Nitrogenous Waste in Terrestrial Animals: The Urea Cycle The **urea cycle** is the primary mechanism by which mammals convert ammonia to urea. Urea is made in the liver and excreted in urine. The overall chemical reaction by which ammonia is converted to urea is 2 NH_3 (ammonia) $+ \text{CO}_2 + 3 \text{ ATP} + \text{H}_2\text{O} \rightarrow \text{H}_2\text{N-CO-NH}_2$ (urea) $+ 2 \text{ ADP} + 4 \text{ P}_1 + \text{AMP}$. The urea cycle utilizes five intermediate steps, catalyzed by five different enzymes, to convert ammonia to urea, as shown in **Figure 41.12**. The amino acid L-ornithine gets converted into different intermediates before being regenerated at the end of the urea cycle. Hence, the urea cycle is also referred to as the ornithine cycle. The enzyme ornithine transcarbamylase catalyzes a key step in the urea cycle and its deficiency can lead to accumulation of toxic levels of ammonia in the body. The first two reactions occur in the mitochondria and the last three reactions occur in the cytosol. Urea concentration in the blood, called **blood urea nitrogen** or BUN, is used as an indicator of kidney function. Figure 41.12 The urea cycle converts ammonia to urea. ## **Excretion of Nitrogenous Waste** The theory of evolution proposes that life started in an aquatic environment. It is not surprising to see that biochemical pathways like the urea cycle evolved to adapt to a changing environment when terrestrial life forms evolved. Arid conditions probably led to the evolution of the uric acid pathway as a means of conserving water. ## Nitrogenous Waste in Birds and Reptiles: Uric Acid Birds, reptiles, and most terrestrial arthropods convert toxic ammonia to **uric acid** or the closely related compound guanine (guano) instead of urea. Mammals also form some uric acid during breakdown of nucleic acids. Uric acid is a compound similar to purines found in nucleic acids. It is water insoluble and tends to form a white paste or powder; it is excreted by birds, insects, and reptiles. Conversion of ammonia to uric acid requires more energy and is much more complex than conversion of ammonia to urea **Figure 41.13**. Figure 41.13 Nitrogenous waste is excreted in different forms by different species. These include (a) ammonia, (b) urea, and (c) uric acid. (credit a: modification of work by Eric Engbretson, USFWS; credit b: modification of work by B. "Moose" Peterson, USFWS; credit c: modification of work by Dave Menke, USFWS) # everyday CONNECTION ### Gout Mammals use uric acid crystals as an **antioxidant** in their cells. However, too much uric acid tends to form kidney stones and may also cause a painful condition called gout, where uric acid crystals accumulate in the joints, as illustrated in **Figure 41.14**. Food choices that reduce the amount of nitrogenous bases in the diet help reduce the risk of gout. For example, tea, coffee, and chocolate have purine-like compounds, called xanthines, and should be avoided by people with gout and kidney stones. Figure 41.14 Gout causes the inflammation visible in this person's left big toe joint. (credit: "Gonzosft"/Wikimedia Commons) # 41.5 | Hormonal Control of Osmoregulatory Functions By the end of this section, you will be able to do the following: - · Explain how hormonal cues help the kidneys synchronize the osmotic needs of the body - Describe how hormones like epinephrine, norepinephrine, renin-angiotensin, aldosterone, anti-diuretic hormone, and atrial natriuretic peptide help regulate waste elimination, maintain correct osmolarity, and perform other osmoregulatory functions While the kidneys operate to maintain osmotic balance and blood pressure in the body, they also act in concert with hormones. Hormones are small molecules that act as messengers within the body. Hormones are typically secreted from one cell and travel in the bloodstream to affect a target cell in another portion of the body. Different regions of the nephron bear specialized cells that have receptors to respond to chemical messengers and hormones. Table 41.1 summarizes the hormones that control the osmoregulatory functions. ### **Hormones That Affect Osmoregulation** | Hormone | Where produced | Function | |--------------------------------|-----------------|--| | Epinephrine and Norepinephrine | Adrenal medulla | Can decrease kidney function temporarily by vasoconstriction | | Renin | Kidney nephrons | Increases blood pressure by acting on angiotensinogen | **Table 41.1**